SÍNTESIS DE LOS ANEXOS:

DISTRIBUCIÓN	DEFINICIÓN
Chi-cuadrado	$\chi_n^2 \sim \sum_{i=1}^n X_i^2$, si X_1, \dots, X_n son v.a. independientes con distribución $N(0,1)$
t de Student	$t_n \sim \frac{X}{\sqrt{\frac{Y}{n}}}$, si $X \sim N(0,1)$, $Y \sim \chi_n^2$ y son v.a. independientes
F de Snedecor	$F_{n,m} \sim \frac{X/n}{Y/m}$, si $X \sim \chi_n^2$, $Y \sim \chi_m^2$ y son v.a. independientes

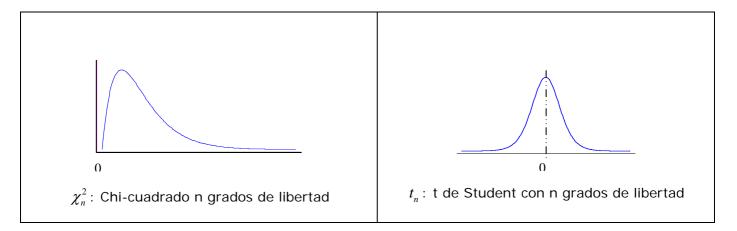
ANEXO 1: Distribuciones χ_n^2 y t_n.

A1.1. Distribución "Chi-cuadrado" de Pearson con n grados de libertad: χ^2_n .

Si $X_1,...,X_n$ son v.a. independientes con distribución N(0,1), entonces la v.a. $\sum_{i=1}^n X_i^2$ sigue una distribución de probabilidad denominada "Chi-cuadrado" de Pearson con n grados de libertad y lo denotamos:

$$\sum_{i=1}^n X_i^2 \sim \chi_n^2$$

Se puede demostrar que $\chi_n^2 = \gamma\left(\frac{n}{2}, \frac{1}{2}\right)$. Por tanto, es siempre positiva y su gráfica, para n>2 tiene la forma:



A1.2. Distribución t de Student, t_n , con n grados de libertad:

Si $X_{_0},X_{_1},\ldots,X_{_n}$ son v.a. independientes con distribución Nig(0,1ig) y se considera la v.a.

$$Y = \sum_{i=1}^{n} X_i^2 \sim \chi_n^2$$
, entonces la v.a. $\frac{X_0}{\sqrt{\frac{Y}{n}}}$ sigue una distribución denominada t de Student con n

grados de libertad y se denota:

$$\frac{X_0}{\sqrt{\frac{Y}{n}}} \sim t_n$$

El número de grados de libertad de la t_n es el mismo que el de la χ^2 que interviene en su definición.

- Esta v.a. toma valores en todo \mathbb{R} ,
- es simétrica respecto del 0
- su gráfica tiene una forma análoga a la normal, aunque algo más achatada
- Se puede demostrar que $t_n \to N(0,1)$, cuando n tiende a infinito
- sólo hay tablas de t_n hasta n=120; para valores mayores, se considera $t_n \approx N(0,1)$

A1.3. Teorema de Fisher.

Si $X_1, ..., X_n$ es una m.a.s. de una v.a. X con distribución $N(\mu, \sigma)$ entonces:

(1)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 y $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ son independientes.

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$
.

A1.4. Obtención del pivote para $IC(\mu)$ en poblaciones normales.

Como consecuencia de este resultado y de la definición de t_n , en las condiciones anteriores (m.a.s. de una v.a. X con distribución $N(\mu,\sigma)$) se verifica que:

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}.$$

En efecto:

- Por ser v.a. con distribución normal, se tiene que $\frac{\overline{X} \mu}{\sigma / \sqrt{n}} \sim N(0,1)$ y $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$, y además son v.a. independientes (teorema de Fisher).
- La definición de la t de Student es $\frac{X_0}{\sqrt{\frac{Y}{n}}} \sim t_n$, siendo $X_0 \sim N(0,1)$ e $Y \sim \chi_n^2$.

Si llamamos
$$X_0 = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$
 e $Y = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$, podemos construir una t -Student

$$\frac{\frac{\overline{X} - \mu}{\sigma \sqrt{n}}}{\sqrt{\left(\frac{(n-1)S^2}{\sigma^2}\right)}} = \frac{\overline{X} - \mu}{S \sqrt{n}} \sim t_{n-1}$$

que elimina la influencia de σ .

ANEXO 2: Distribución Fn.m

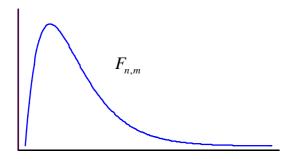
A2.1. Definición.

Si $X \sim \chi_n^2$ e $Y \sim \chi_m^2$ son v.a. independientes, la v.a. $\frac{X/n}{Y/m}$ sigue una distribución denominada **F de**

Snedecor con *n,m* grados de libertad, y de denota:

$$\frac{X/n}{Y/m} \sim F_{n,m} .$$

Su gráfica es similar a la de una Gamma:



Propiedad: Si $T \sim F_{n,m}$, entonces $\frac{1}{T} \sim F_{m,n}$.

Esta propiedad, también se puede denotar como $F_{n,m} = \frac{1}{F_{m,n}}$

A2.2. Obtención del pivote para el intervalo de confianza para el cociente de varianzas:

Consideramos que X e Y son v.a. independientes tales que $X \sim N(\mu_X, \sigma_X)$, $Y \sim N(\mu_Y, \sigma_Y)$.

Sean (X_1, \ldots, X_{nx}) , (Y_1, \ldots, Y_{ny}) , m.a.s. de X e Y respectivamente, siendo n_X el tamaño de la muestra de X y siendo n_Y el tamaño de la muestra de Y.

 $S_{\it X}^{\it 2}$, $S_{\it Y}^{\it 2}$ son las cuasivarianzas muestrales de $\it X$ e $\it Y$ respectivamente.

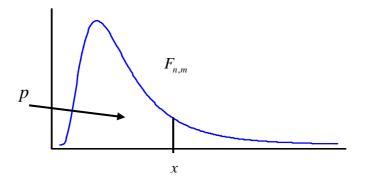
Aplicamos el Teorema de Fisher a las dos muestras y tenemos:

$$\frac{(n_X - 1)S_X^2}{\sigma_X^2} \sim \chi_{n_X - 1}^2 \; ; \; \frac{(n_Y - 1)S_Y^2}{\sigma_Y^2} \sim \chi_{n_Y - 1}^2.$$

Como X e Y son v.a. independientes, las anteriores v.a. también son independientes y podemos aplicar la definición de la distribución F de Snedecor:

$$\frac{\frac{\left(n_{X}-1\right)S_{X}^{2}}{\sigma_{X}^{2}}/\left(n_{X}-1\right)}{\frac{\left(n_{Y}-1\right)S_{Y}^{2}}{\sigma_{Y}^{2}}/\left(n_{Y}-1\right)} = \frac{S_{X}^{2}/\sigma_{X}^{2}}{S_{Y}^{2}/\sigma_{Y}^{2}} = \frac{S_{X}^{2}/S_{Y}^{2}}{\sigma_{X}^{2}/\sigma_{Y}^{2}} \sim F_{n_{X}-1,n_{Y}-1}$$

A2.3. Obtención de valores en las tablas de F_{n,m}.

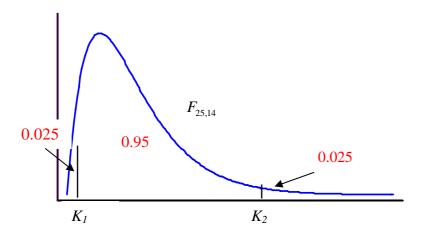


Las tablas de la F de Snedecor, nos dan valores de $P(F_{n,m} \le x) = p$, con $p \ge 0.5$.

Como la distribución F de Snedecor no es simétrica, para hallar los valores x tal que $P(F_{n,m} \le x) = p$, con p < 0.5, se utiliza la propiedad: $F_{n,m} = \frac{1}{F_{m,n}}$ (*)

Por ejemplo, si queremos hallar valores $K_1, K_2 \in \mathbf{R}$, tales que $P(K_1 \le F_{25,14} \le K_2) = 0.95$, lo haremos de la siguiente forma:

i) Hallamos $\pmb{K}_2 \in \pmb{R}$, tal que $\pmb{P} \Big(\pmb{F}_{25,14} \leq \pmb{K}_2 \Big) = 0.975 \quad (=0.025+9.95)$. Tablas: $\pmb{K}_2 = 2.7777$



ii) Hallamos $K_1 \in \mathbb{R}$, tal que $P(F_{25,14} \le K_1) = 0.025$. Como no hay tablas para p = 0.025, haremos lo siguiente:

- $P\left(F_{25,14} \leq K_1\right) \underset{(*)}{=} P\left(\frac{1}{F_{14,25}} \leq K_1\right) = P\left(F_{14,25} \geq \frac{1}{K_1}\right) = 0.025 \text{ , y esto es equivalente a buscar } P\left(F_{14,25} \leq \frac{1}{K_1}\right) = 0.975$
- Buscamos en la tabla el valor $x = \frac{1}{K_1}$ tal que $P(F_{14,25} \le x) = 0.975$: x = 2.4413.
- Hallamos K_7 : $x = \frac{1}{K_1} = 2.4413 \implies K_1 = \frac{1}{2.4413} = 0.4096$.
- iii) Por tanto, tenemos $P(0.4096 \le F_{25,14} \le 2.7777) = 0.95$.

